コンテンツへスキップ

Z-Rietveld Quick Guide

2021.9.17 last updated

  1. starting Z-Rietveld by double click the icon
image
  1. File Menu -> New Analysis
image
  1. Click ‘Add Histogram file’ and specify a histogram file (diffraction data) with the name of‘xxx.histogramIgor’.
    J-PARC MLF histogram data are supplied by the instrument group. For other data, you can also make them (see corresponding section).
image
  1. Click ‘Select Diffractometer’ and specify a diffractometer file (the diffractometer information included) with the name of ‘yyy. zDiffractometer’. J-PARC MLF diffractometer file is supplied by the instrument group. But, you can also make them.
image
  1. Click ‘Create New Analysis Data…’, and input a file name ‘zzz’, then a file with a name of zzz.zrietveld is created. All of your analysis results will be stored in zzz.zrietveld. After zzz.zrietveld is created, a ‘diffraction pattern window’ is displayed. (zzz = xxx in default).

zzz.Zrietveld can be big after repeated analyses which help you to go back to previous analyses. You can restrict size of the file by ‘Preference’ of Z-Rietveld.

image
  1. Input & Edit crystal structure parameters First Select Crystal Structure Models Tab.
image

The crystal structure parameters can be input either by hand or from files.

image
image

How to deal with several chemical species occupying the same site

image
  1. Specify the region to generate Bragg reflections, specify excluded regions
image

Since there are so many Bragg reflections in small TOF, it will take long time to calculate them. So, initially, d > 0.5 Å is recommended.
Impurity peaks can be removed by adding excluded regions.

  1. specify refined parameters
image
image

A profile function specified in .zdiffractometer file is shown.

Buttons: several buttons help your analysis

i) Revert Initial Parameters’ button; if the fitting is not improved, push ‘Revert Initial Parameters’ button. Profile parameters go back to the initial ones.


ii) Change All ID’s; initially, it is sometime recommended to select F to fix all global parameters by clicking this button.

iii) Quick button; when you place your cursor on Quick button, the present labels (F or V) will be displayed. You can toggle F/V by the click of a parameter.

image

iv) Preset buttons are useful; set profile parameters fixed (F) -> push Preset1 and refine -> push Preset2 and refine. In Preset1 & 2, small number of refined parameters is specified. User can customize ‘Preset’ by pushing Edit button.

v) User-defined ‘Preset’ button : push Edit button -> push ‘+’ button You can change name by pushing ‘Untitled’ -> push Edit button, then present ID’s are memorized

Intensity Correction parameters

:Extinction Effect (crystallite size), Preferred Orientation Effect, Absorption Effect

image

Scale factors and conversion parameters

image

If you notice that the scale factor is too large, change the initial value. Conversion between t (time-of-flight) and d-spacing; written in the xxx.zDiffractometer file supplied by the instrument group. If necessary, you can add additional conversion parameter terms.

image
  1. Start Rietveld analysis, change conditions and continue analysis.
image
image

This example shows that the scale factor is too large after the 2nd button-push. Then decrease the scale factor by 1/10 and push the 3rd button.
Generally, it is recommended to repeat simulation until the calculated pattern looks similar to the observed one. The calculated peak positions are required to be almost the same as the observed ones.

Hints; You can add histogram during the analysis

image

Calculate interatomic distances & bond angles

image
image

Export Crystal Structure Model

image

Tab-Separate format allows error format specification

Automatic analysis of continuous multi-points data (datasets: temperature, pressure, etc.)

After a usual analysis for one data, push this button.

image
image

Fourier Analysis / MEM Analysis using Z-Rietveld

After Rietveld analyses, you can quickly move on to Fourier or MEM analyses by just click the Fourier analysis tab or the MEM analysis tab.

image

Quit without convergence :
If C does not improve by varying λ, then decrease λ with using ‘multiplier’ and recalculate C. When λ < 1.0 E-10 after repeated multiplier on λ, then Z-MEM calculation stops.

Magnetic Structure Analysis using Propagation Vector

image
image

Effective Strain, Effective Crystallite Size for type0, type0m profile functions

To obtain the effective strain / effective crystallite size from peak-width parameters, it is necessary to extract instrument contribution. If the broadening due to those effect is comparable with the diffractometer widths, careful subtraction is necessary. In the case of the high resolution diffractometers of J-PARC MLF, you may sometime be approximating the instrument function with Gaussian σ1 only, with γ1、γ2、σ2 close to zero, which makes analysis easier.

Fitting is carried out in t (msec). So, σG2[msec.], HL[msec]. 

image
image

s02 s12 s22 g0 g1 g2 SuperHRPD best resolution 0 58 0 0 0 0 SuperHRPD regular resolution 0 88 0 0 0 0 iMATERIA BS bank 0 45 0 0 0 0 SPICA BS bank 0 90 0 0 0 0

image
image

Examples

1) Effective Strain

image

2) Effective Crystallite Size

image